
  ISSN 2394-9716 

International Journal of Novel Research in Interdisciplinary Studies  
Vol. 10, Issue 1, pp: (6-18), Month: January – February 2023, Available at: www.noveltyjournals.com 

Page | 6 
Novelty Journals 

 

Incorporating Zero-Inflated Poisson (ZIP) 

Regression Model in Crash Frequency Analysis 

Azad Abdulhafedh 

DOI: https://doi.org/10.5281/zenodo.7632596 

Published Date: 11-February-2023 

Abstract: This paper addresses the Zero-inflated Poisson (ZIP) regression model as an effective way to handle the 

excess zeros that usually exist in vehicle crash data and to allow for possible overdispersion in the data. The ZIP 

model is based on a zero-inflated probability distribution, that allows for frequent zero-valued observations. When 

the number of zeros is large that the data do not fit standard distributions (e.g., normal, Poisson, binomial, negative-

binomial, and beta), the data is referred to as zero inflated. A dual state crash system is assumed in the ZIP model, 

in which one state is the zero crash state that can be regarded as virtually safe during the observation period, while 

the other state is the non-zero crash state. This paper starts by applying a multiple linear regression model, a Poisson 

regression model, a Negative Binomial regression model and then introduces the ZIP model to analyze the 2013-

2015 crash data for the Interstate I-94 in the State of Minnesota in the US. Results show that the ZIP model 

overperformed the other models by fitting the crash data much better and was able to capture almost all the 

independent variables in the model and make them statistically significant in the analysis after being insignificant 

by the other models.  

Keywords: Zero-Inflated Poisson Regression, ZIP model, Crash Frequency, Multiple Linear Regression, Poisson 

Regression, Negative Binomial Regression. 

1.   INTRODUCTION 

Vehicle crashes are a global concern, and socio-economic aspect, leading to tremendous life and property loss each year 

around the world. Despite the efforts to apply preventive measures, the annual number of traffic accidents has not yet 

significantly decreased. For instance, in the US in 2021, there were an estimated 42,915 people died in motor vehicle traffic 

crashes, a 10.5% increase from the 38,824 fatalities in 2020. On average, one person was killed every 14 minutes and an 

estimated 4 people were injured every minute in traffic crashes [1] [2]. Therefore, modeling crash data is emphasized in 

highway safety research. The average number of crashes per section of road is called the crash frequency, which has been 

widely used as an indicator of the crash occurrence at highways. A variety of independent variables can affect crash 

frequency that are related to the driver behaviors, road characteristics, vehicle, and environment. The influence of such 

variables on crash frequency could significantly vary on case by case basis, but in general, past research have shown that 

both driver’s factors, and nonbehavioral factors related to the road geometry, vehicle, and environment can significantly 

affect crash frequencies [3] [4] [5] [6]. 

2.   BACKGROUND LITERATURE 

Crash frequency models were first based on the simple Multiple Linear Regression models assuming normally distributed 

errors. However, research showed that crash occurrence is more fitted with the Poisson distribution, and hence began to 

utilize the Poisson regression model that was developed by the Generalized Linear Models (GLM), instead of the 

conventional multiple linear regression technique. The Multivariate Poisson regression models have been used for several 

decades to explore the relationship between the risk factors and crash rates [7] [8] [9] [10]. However, it was found that the 

Poisson regression model has one important constraint that is the mean must be equal to the variance, and when this 
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assumption is violated, the standard errors estimated by the maximum likelihood method, will be biased and the test statistics 

derived from the model will be incorrect. In addition, since the crash data are usually overdispersed (i.e., the variance is 

greater than the mean), therefore, this will result in incorrect estimation of the likelihood of accident occurrence when using 

the Poisson regression model [11]. In overcoming the problem of over-dispersion, research began to employ the Negative 

Binomial (NB) distribution (or Poisson-Gamma) instead of the Poisson distribution, which relaxes the condition of mean 

equals to variance, and hence can consider the over-dispersion in the crash data [12]. However, the NB model was also 

found to have some limitations such as its inability to handle the case of under-dispersion of the data, where the mean of 

the crash data is higher than the variance, and this can exist when the sample size used is very small which can result in 

inadequate parameter estimates [13] [14]. Hence, to overcome the limitations of the NB models, the zero-inflated Poisson 

and zero-inflated negative binomial models have been introduced mainly to deal with the over-dispersion problem caused 

by the excessive zeroes (i.e., locations where no accidents can be observed) in traffic accident data. The zero-inflated 

procedure allows modeling the accident frequencies in two states, namely; the zero-accident state, and the non-zero accident 

state, and the probability of a section being in zero or non-zero states can be found by a binary logit model or a probit model. 

These zero-inflated models have shown great flexibility in both states and produced promising estimates [15] [16].  

Data 

The crash data is obtained from the Highway Safety Information System (HSIS) database, which is maintained by the 

Federal Highway Administration (FHWA) of the United States Department of Transportation (USDOT). The data includes 

the accident records, the road data, and the vehicle records. The accident records contain information about the fatality of 

crashes, the environment, and the circumstances of the crash occurrence. The vehicle records describe various 

characteristics of the vehicle(s) involved in the crash. The road data provide information on the road characteristics and 

geometry where the accidents occurred. The crash data consists of 3 years crash records on the interstate 94 (I-94) in the 

State of Minnesota for the years 2013, 2014, 2015. These crash data were the latest available data from the state of Minnesota 

in the HSIS database. The I-94 is a multilane highway, which runs 259 miles (417 km) east–west through the central portion 

of the State of Minnesota. The observed crash frequency of I-94 at all road sections from 2013 to 2015 ranges from 0 to 5, 

the average crash frequency is 0.597, the number of sections with zero crash frequency is 484, the number of sections with 

only one crash frequency is 179, the number of sections with two crashes is 74, the number of sections with three crashes 

is 27 as shown in Figure 1. The normal distribution curve of crash frequency is clearly skewed as can be seen in Figure 1. 

The dependent variable is the crash frequency, and different independent variables are included in the research related to 

the road characteristics, the environment, the traffic volume, the driver’s factors, and the vehicle types as shown in Table 1 

along with their summary statistics. The crash data (770 observations) was randomly splitted into two subsets using the R 

software; training data (70%), and testing data (30%). The training data consisted of  545 observations, and testing data 

consisted of 232 observations. 

 

Figure 1: Histogram of Crash Frequency with Normal Curve at I-94 MN 

http://www.researchpublish.com/


  ISSN 2394-9716 

International Journal of Novel Research in Interdisciplinary Studies  
Vol. 10, Issue 1, pp: (6-18), Month: January – February 2023, Available at: www.noveltyjournals.com 

Page | 8 
Novelty Journals 

 

Table 1: Variables included in the research with summary statistics 

Variable  Description Variable classes Min. Mean  Std. dev. Max. 

crash_frq crash frequency rate 0 to 5 0 0.597 0.939 5 

mi_post the number of the mile marker at 

which the crash occurred 

1 to 259 1 130 74.81 259 

rd_char The characteristics of the road 

section where the crash occurred 

1-Straight  

2-Upgrade  

3-Downgrade  

4-Horizontal curve 

1 1.664 1.073 4 

rd_surf The condition of the road surface 

where the crash occurred 

1-Dry  

2-Wet  

3-Snowy 

1 2.382 0.816 3 

aadt The Annual Average Daily 

Traffic of the road section where 

the crash occurred 

Numeric 

values in 1000s vehicles 

5.7 13.04 5.515 27.22 

weather The weather conditions when the 

crash occurred 

1-Clear 

2-Rain  

3-Snow  

4-Fog 

1 1.525 0.789 4 

light The type of light existed at the 

time of the crash 

1-Daylight 2-Dark, but 

Lights On  

3-Dark, but with No Lights 

1 1.653 0.694 3 

drv_age The age of the driver of the 

vehicle involved in the crash 

1-< 21 years  

2-between 21 to 65 3-> 65 

years 

1 1.728 0.564 3 

drv_sex Sex of the driver of the vehicle 

involved in the crash 

1-Male  

2-Female 

1 1.405 0.491 2 

veh_type Type of vehicle involved in the 

crash 

1-Passenger Car  

2-Van 3-Bus  

4-Truck 

1 1.179 0.585 4 

Exploratory Data Analysis 

To begin with the analysis, an exploratory data analysis (EDA) was conducted using R. The null values and outliers were 

checked, and found to be very few, so they were excluded. The matrix scatterplot of all variables is produced including 

correlation values between variables as shown in Figure 2. Also, the correlation matrix of all variables is created, which  

helps visualizing how the different variables are correlated as shown in Figure. 3. The matrix scatterplot shows the density 

plots and distribution of the subclasses of each variable. For example, the distribution of the crash frequency shows that 

road sections with zero crashes are higher than the other rates of 1, 2, 3 etc. The distribution of the road characteristics 

shows that the straight sections are much higher than upgrades and downgrades. Sections with horizontal curves are more 

frequent than upgrades and downgrades. The distribution of the road surface shows that the snowy sections are more 

frequent than the dry and wet sections when crashes occurred. The distribution of the weather conditions shows that the 

clear weather is higher than the rain, snow, and fog when crashes occurred. The driver’s age distribution shows that the 

middle age group (21 – 65 years) contributed to the crash occurrence more than the young and elderly groups. The 

distribution of the vehicle type shows that the passenger car type was more involved in the crashes than vans, buses, and 

trucks. The correlation values between variables can be read directly from the scatterplot in Figure 2 and from the correlation 

matrix in Figure 3. All variables have very small correlation with each other as shown in Figure 2 and 3. The only moderate 

correlation value exists between road characteristic and crash frequency (56.5% or around 60%), which is still acceptable. 

Hence, all selected independent variable were kept in the analysis. 
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Figure 2: Matrix Scatterplot of all variables at I-94 MN 

 

Figure 3: Correlation Matrix of all variables at I-94 MN 

Histograms of all variables are produced in R as shown in Figure 4. Histograms can help understanding how the values of 

different variables subclasses are distributed. For example, the road characteristics subclasses can be easily found from 

Figure 4. For instance, the straight sections were crashes occurred are 548, the upgrades are 129, the downgrades are 26, 

and horizontal curves are 122. The dry road surface conditions where crashes occurred are 168, and the wet surface 

conditions are 122. The clear weather conditions when crashes occurred are 479, and the rain weather conditions are 186. 

The passenger car types involved in crashes are 681, and van types are 39.  
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Figure 4: Histograms of all Variables with subclasses at I-94 MN 

An Overview of the Regression Models used 

The basic goal of regression analysis is to fit a model that best describes the relationship between the predictor variables 

and a response variable [17]. The following regression models are used in this paper to model the crash frequency at the 

intestate I-94 in the State of Minnesota for the period (2013-2015); the multiple linear regression model, the Poisson 

regression model, the Negative Binomial regression model, and the zero inflated Poisson regression model. 

The Multiple Linear Regression Model 

Multiple linear regression is the basic model that can be used to estimate the relationship between two or more independent 

variables (also called the explanatory variables) and one dependent variable (also called the response variable).  

let Y be the response variable, and Xi be the vector of the explanatory variables. Then, the formula can be expressed as [6] 

[18]: 

Y = β0 + β1X1  + ......+ βnXn +  ϵ   where ϵ ∼ N (0,σ2) 

Where: 

Y = the predicted value of the response variable,  

β0 = the y-intercept,  

β1X1 = the regression coefficient of the first independent variable ( X1),  

βnXn = the regression coefficient of the last independent variable Xn,  

ε = model error (i.e., how much variation there is in the estimate of Y).  

The assumptions of the multiple linear regression include: normal distribution of data,  linear relationships between the 

explanatory and response variables, independence of observations, and homogeneity of variance ( also called the 

homoscedasticity). 

http://www.researchpublish.com/
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The Poisson Regression Model 

The Poisson regression can easily handle the count response variable of the crash frequency, since crash data are often 

described as random events, discrete, and non-negative integers, and often their distributions are found to be skewed as 

shown in Figure 1, which is close to the Poisson distribution rather than other distributions such as the normal distribution 

(Hafsa, 2019). The Poisson distribution formula is [6] [18]:  

P(x) = (e ^ -λ * λx) / x! 

Where:  

e: is the Euler's number(e = 2.71828),  

x: is a Poisson random variable that gives the number of occurrences (x = 0, 1 , 2,.......),  

λ: is an average rate of the event in the desired time interval and, 

! = factorial of functions.  

The crash frequency can be estimated by the expression: 

λi = EXP( β Xi ) 

where: 

λi: the dependent variable (the expected number of crashes per road section),  

Xi : a vector of the independent (explanatory) variables,  

β: a vector of the estimates (coefficients) of the independent variables Xi.  

The assumptions of the Poisson regression include; the response variable should be a count variable, independence of 

observations, the mean = variance, the log of the mean rate must be a linear function of x. 

The Negative Binomial Regression Model 

The Negative Binomial regression model is used as an alternative to the Poisson regression, because it relaxes the condition 

of mean equals to variance, and hence can consider the overdispersion that may exist in crash data. In order to obtain the 

negative binomial model for the crash frequency, the Poisson regression can be rewritten by adding an error term to its 

expected number of crashes, and becomes [6] [8] [18]: 

 λi = EXP ( βXi + εi)  

where:  

EXP (εi ) is a gamma-distributed error with mean equals one and variance equals α.  

This error term allows the variance to differ from the mean. When α is zero, the model becomes Poisson regression, and if 

α is found to be significantly different from zero, then the negative binomial regression can be used instead of the Poisson 

regression model [6] [18].  

The Zero Inflated Poisson Regression (ZIP) Model  

Zero-inflated models are statistical models based on a zero-inflated probability distribution, i.e., a distribution that allows 

for frequent zero-valued observations. When the number of zeros is so large that the data do not fit standard distributions 

(e.g., normal, Poisson, binomial, negative-binomial, and beta), the data is referred to as zero inflated. A dual state crash 

system is assumed in these models, in which one state is the zero crash state that can be regarded as virtually safe during 

the observation period, while the other state is the non-zero crash state. Thus, they are two-part models, a logistic model for 

whether an observation is zero or not, and a count model for the other part. Both models can use the same predictor variables 

but estimate their coefficients separately. So, the predictors can have different effects on the two processes. The crash data 

used in our paper has a high percent of zero crashes (62.3%), which requires to be fitted with zero inflated models. The 

Poisson zero inflated is called (ZIP). The two model components are described as follows [14] [18] [19] [20] [21]: 
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Where: 

yj is the response variable,  

λi is the expected rate of the Poisson count for the hi individual, and,  

π is the probability of extra zeros. 

The mixed probabilities for the ZIP model are expressed as follows [22] [23] [24] [25] [26]: 

1- a membership of Always-0 group is a binary outcome that can be predicted by logit or probit model. The probability 𝜓𝑖 

that observation 𝑖 is in Always-0 group is predicted by the characteristic of observation 𝑖, so that can be written as:  

𝜓𝑖 = 𝐹(𝑧𝑖 ′𝛾) 

where 𝑧𝑖 is the vector of covariates and 𝛾 is the vector of coefficients of logit or probit regression.  

2- The probability that observation 𝑖 is in Not always-0 group becomes (1- 𝜓𝑖) . For observations in Not always-0 group, 

their positive count outcome is predicted by the standard Poisson model, so that can be written as: 

 

where 𝜇𝑖 is the conditional mean. 

The overall ZIP model can be mathematically written as: 
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3.   DISCUSSION AND FINDINGS 

First, a multiple linear regression model was fitted to the test data and the results were obtained in R as shown in Table 2. 

Table 2: The Outcome of Multiple Linear Regression Model  

 

 

 

From Table 2, we can see that the only significant variable is the road characteristics as its p-value is less than 0.001. The 

other independent variables are insignificant. The multiple R-squared measures the strength of the linear relationship 

between the response variable and the predictor variables, the higher the value the better the fit. We can see that the R-

squared is 0.2974, which is small. Also, the adjusted R squared, which is a modified version of R-squared that has been 

adjusted for the number of predictors in the model is only 0.2855. The assumption of normality was already checked by 

plotting a histogram for the dependent variable, and it was found to be skewed as shown in Figure 1. Therefore, the normality 

assumption is violated. The linearity assumption was already checked using the matrix scatterplot of all variables as shown 

in Figure 2. The matrix scatterplot showed almost linear relationships between the dependent and independent variables. 

The independence of observations was checked by determining the correlation matrix of all variables, which showed very 

small correlation for almost all explanatory variables as shown in Figure 3. The assumption of homoscedasticity is checked 

by generating the plot of residuals vs fitted values as shown in Figure 5. We can see from Figure 5 that the red lines 

representing the mean of the residuals are all basically horizontal and centered around zero. This means there are no outliers 

or biases in the data that would make a linear regression invalid. In the Normal Q-Q plot, we can see that the residuals are 

almost perfect one-to-one line. Based on these residuals, we can say that our model meets the assumption of 

homoscedasticity. However, since the normality assumption is violated, and almost all variables are insignificant in the 

model, this suggests using a different model to better fit our data. 

 

Figure 5: Plot of Residuals vs Fitted for the Multiple Linear Regression Model 

Coefficients   Estimate  Std. Error   t value   Pr (>|t|)     

Intercept 0.0251348 0.246419 0.102 0.919 

mi_post       0.0002855 0.000443 0.644 0.52 

rd_char       0.4587676 0.031091 14.76 <2e-16 *** 

rd_surf       -0.034161 0.041004 -0.833 0.405 

aadt          0.0025256 0.00627 0.403 0.687 

weather       0.0010893 0.043452 0.025 0.98 

light         0.0046781 0.048854 0.096 0.924 

drv_ age -0.055867 0.060864 -0.918 0.359 

drv_sex      -0.041855 0.069098 -0.606 0.545 

veh_type      -0.056436 0.057471 -0.982 0.327 

Residual standard error: 0.7739 on 535 degrees of freedom 

Multiple R-squared:  0.2974, Adjusted R-squared:  0.2855  

F-statistic: 25.16 on 9 and 535 DF,  p-value: < 2.2e-16 
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Next, a Poisson regression model was fitted to the test data, and the results were obtained in R as shown in Table 3. 

Table 3: The Outcome of Poisson Regression Model 

Coefficients   Estimate  Std. Error   z value   Pr (> |z|)     

Intercept -1.38562 0.428308 -3.235 0.00122 **  

mi_post 0.00048 0.000753 0.634 0.52578 

rd_char       0.58693 0.04265 13.76 < 2e-16 *** 

rd_surf      -0.05984 0.070023 -0.855 0.39278 

aadt          0.00247 0.010732 0.23 0.81817 

weather       0.00974 0.076799 0.127 0.89903 

light         0.01 0.081079 0.123 0.90188 

drv_age       -0.0952 0.108811    -0.875 0.38163 

drv_sex      -0.06581 0.120209 -0.547 0.58406 

veh_type      -0.13072 0.117035 -1.117 0.26401 

Null deviance: 710.64  on 544  degrees of freedom 

Residual deviance: 522.74  on 535  degrees of freedom 

AIC: 994.62 

From Table 3, we can notice that the only significant independent variable is the road characteristics as its p-value is less 

than 0.001. The other independent variables are insignificant. The coefficient for road characteristics is 0.586. This means 

that the expected log count for a one-unit increase in rd_char is 0.586, which will positively increase the mean number of 

crash_frq by 0.586. Likewise, the coefficient for (aadt) for example is 0.0024, which indicates that the expected log count 

for (aadt) is 0.0024. This variable is statistically insignificant (p = 0.818 > 0.05). The coefficient for road surface is - 0.059. 

This means that the expected log count for a one-unit increase in rd_surf is – 0.059, which will negatively affect the crash 

frequency and decrease the mean number of crash_frq by 0.059. The null deviance tells us how well the response variable 

can be predicted by a Poisson model with only an intercept term. The residual deviance tells us how well the response 

variable can be predicted by a Poisson model that include all independent variables. Since the Poisson regression model is 

a form of the Generalized Linear Models (GLMs), there are many goodness of fit measures can be used for estimating how 

well the model fits the data, such as the residual deviance, and Pearson Chi square test. If the model fits the data well, the 

ratio of the residual deviance to the degrees of freedom should be close to one. From the model outcome, we can see that 

the ratio of deviance/df = 522.74/535 = 0.977 which is very close to 1. In addition, we conducted a Chi-Square goodness of 

fit test in R, and  we got the p-value for this test as (p-value = 0.639 > 0.05), which suggests that the data  fits the model 

reasonably well. Another important aspect related to Poisson regression is the overdispersion that is often exist in count 

data. Poisson regression of overdispersed data leads to a deflated standard errors and insufficient test statistics. In R, 

overdispersion can be analyzed using the “qcc” package. If the dispersion ratio is larger than one, this will indicate 

overdispersion in the data.  After conducting the test in R, we got the overdispersion ratio of the test as (1.0596), which is 

slightly greater than 1, suggesting an overdispersion in the data. Overdispersion can be fixed by choosing a different 

distributional family, such as negative binomial regression. So, we will fit a negative binomial model using the ‘glm.nb’ 

function in the ‘MASS’ package in R. 

Next, a Negative Binomial regression model was fitted to the test data, and the results were obtained in R as shown in Table 

4. 

Table 4: The Outcome of Negative Binomial Regression Model 

Coefficients   Estimate  Std. Error   z value   Pr (> |z|)     

Intercept -1.3841882   0.4296004   -3.222   0.00127 **  

mi_post 0.0004798   0.0007558    0.635   0.52554     

rd_char       0.5868364   0.0427853   13.716   < 2e-16 *** 

rd_surf      -0.0601328   0.0702482    -0.856   0.39200     

aadt          0.0024895   0.0107674     0.231   0.81715   

weather       0.0098412   0.0770335    0.128   0.89834     
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light         0.0098125   0.0813588    0.121   00.90400     

drv_age       -0.0952326   0.1091446    -0.873   0.38292     

drv_sex      -0.0666828   0.1205998   - 0.553   0.58031     

veh_type      -0.1304260   0.1172604    -1.112   0.26602     

Null deviance: 707.78  on 544  degrees of freedom 

Residual deviance: 520.80  on 535  degrees of freedom  

AIC: 990.72 

From Table 4, we can see again that the only significant independent variable is the road characteristics as its p-value is less 

than 0.001. The other independent variables are insignificant. There are positive and negative coefficients. The positive 

coefficients indicate that the expected log count for a one-unit increase will positively increase the mean number of 

crash_frq by the coefficient value. The negative coefficients indicate that the expected log count for a one-unit increase will 

decrease the mean number of crash_frq by the coefficient value. Therefore, the positive coefficients of (mi_post, rd_char, 

aadt, weather, light) will positively increase the mean of crash frequency. But the negative coefficients of (rd_surf, drv_age, 

drv_sex, veh_type) will negatively decrease the mean of crash frequency. From the model outcome, we can see that the 

ratio of the residual deviance/df = 520.8/535 = 0.988, which is very close to 1. So, we can say that the data  fits the model 

well and better than the Poisson regression. In addition, we conducted an overdispersion ratio test in R, and we got an 

overdispersion ratio of (1.0309), which is slightly greater than 1, but better than what we got from the Poisson model. The 

AIC of the negative binomial is slightly lower than the AIC of Poisson model, which indicates a better fit as well. However, 

since most independent variables are still insignificant, and our data consists of 62% zero crash sections, we will fit a zero 

inflated Poisson model. 

Next, a Zero Inflated Poisson (ZIP) regression model was fitted to the test data, and the results were obtained in R as shown 

in Table 5. 

Table 5: The Outcome of Zero-Inflated Poisson Regression Model 

Count model coefficients (Poisson with log link) 

Coefficients   Estimate  Std. Error   z value   Pr (> |z|)     

Intercept -1.4519528   0.3544320  -   -4.097  -4.19e-05 *** 

mi_post 0.0005170    0.0006146    0.841    < 2e-16 *** 

rd_char       0.5910766   0.0342967   17.234   < 2e-16 *** 

rd_surf      0.0624270   0.0571916   1.092    < 2e-16 *** 

aadt          0.0120272   0.0085381    1.409     5.79e-10 *** 

weather       0.0288467   0.0620952    0.465    < 2e-16 *** 

light         0.0389533   0.0677771       0.575    < 2e-16 *** 

drv_age       0.0334547   0.0864880    0.387    < 2e-16 *** 

drv_sex      -0.0837287   0.0964907   - 0.868    0.3855     

veh_type      0.1708939   0.0959439   1.781    < 2e-16 *** 

Zero-inflation model coefficients (binomial with logit link) 

Coefficients   Estimate  Std. Error   z value   Pr (> |z|)     

Intercept -1.5343      0.3755   -4.086 4 4.38e-05 *** 

mi_post 1.646          0.0923781   19.314   < 2e-16 *** 

rd_char       160.681          0.4184956   6.196  5.79e-10 *** 

rd_surf      2.9428092   0.8523669    3.453  0.000555 *** 

aadt          15.902          0.0002064    3.735  0.000188 *** 

weather       105.894          0.0390319    9.589   < 2e-16 *** 

light         1.7772101   0.3233166   5.497 3 3.87e-08 *** 

drv_age       1130.471          0.8360020   3.659  0.000253 *** 

drv_sex      -177.016          0.3226731    5.502  0.09834 

veh_type      501.927          0.0005307    6.020  1.75e-09 *** 

Number of iterations in BFGS optimization: 109  

Log-likelihood: -467.1 on 20 Df 
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From Table 5, we can find two model parts; the first contains a Poisson regression coefficients for each of the variables 

along with standard errors, z-scores, and p-values for the coefficients. The second part corresponds to the inflation model. 

This includes logit coefficients for predicting excess zeros along with their standard errors, z-scores, and p-values. We can 

see that all the independent variables become statistically significant in both the count model and the zero inflation model 

as their p-values are now much less than 0.001, except the variable of driver sex, which turned to be insignificant as its p-

value is greater than 0.05. Moreover, we can notice that all the independent variables having now positive coefficients in 

both the count model and the zero inflation model, except the driver sex, which has a negative coefficient. The positive 

coefficients of all explanatory variables suggest that the expected log count for a one-unit increase will positively increase 

the mean number of crash_frq by the coefficient value. Therefore, all variables included in the model (except the drv_sex) 

will positively increase the mean of crash frequency in an amount that corresponds to each coefficient. We can check if our 

ZIP model fits the data significantly better than the null model, i.e., the intercept-only model. To show that this is the case, 

we can compare the current model to a null model without predictors using chi-squared test on the difference of log 

likelihoods in R, and we got a very small p-value (0.00297). Therefore, we can be confident to say that our ZIP model is 

statistically significant and fits the data very well. In addition, we generated the plot of the residuals vs predicted and the 

Q-Q plot of the ZIP model as shown in Figure 6.  

 

Figure 6: Plot of Residuals vs Predicted for the ZIP model 

We can see from Figure 6 that the quantile-quantile plot (Q-Q) looks almost fine, and the standardized residuals show close 

pattern with expectations, since the red lines are nearly horizontal, which indicate a very good model fit to the data. So, we 

can conclude that our zero inflated Poisson regression (ZIP) model has captured almost all the independent variables in the 

model and fit the data much better than the multiple linear regression, Poisson regression, and the negative binomial 

regression models. Therefore, our ZIP model is considered as the optimal regression model to predict the crash frequency 

in this paper.  

Next, the predicted crash frequencies for each crash rate at the I-94 in MN were obtained using our ZIP model and the test 

data as shown in Table 6. The predicted zero crash sections are 119 (89% prediction), the predicted one crash sections are 

54 (85% prediction), and the predicted two crash sections are 16 (76% prediction). The achieved prediction percent by the 

ZIP model looks very good. 
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Table 6: Observed vs Predicted Crashes at I-94 by the ZIP model 

Crash Frequency  Observed Crashes  Predicted Crashes  % Prediction 

0 133 119 89 

1 63 54 85 

2 21 16 76 

3 9 6 66 

4 5 3 60 

5 1 1 100 

4.   CONCLUSION 

Road traffic crashes are considered a leading cause of death in the United States and worldwide. Modeling vehicle crash 

frequency can provide a clear understanding of the significant risk factors contributing to the vehicle crashes. This paper 

used crash data to model the crash frequency on the interstate I-94 in the State of Minnesota for the years 2013-2015. 

Different risk factors that could contribute to the crash occurrence were included in the research, such as the road 

characteristics (i.e., straight sections, upgrades, curves), the road surface conditions (i.e., dry, wet), the weather conditions 

(i.e., clear, rainy), the annual average daily traffic (AADT) of the road sections, the light conditions (i.e., day light, dark), 

the driver’s age, the driver’s sex, and the vehicle type (i.e., passenger car, truck). In order to find the optimal model, varieties 

of regression models were used to predict the crash frequency, including; the multiple linear regression, the Poisson 

regression, the negative binomial regression, and the zero-inflated Poisson (ZIP) regression. The multiple linear regression 

model identified only one significant risk factor (road characteristics) and failed to fulfill the normality assumption, because 

the crash data was skewed. The Poisson regression model determined only one significant variable (road characteristics) 

and couldn’t consider the overdispersion that existed in the crash data. Although the negative binomial regression model 

better fitted the data than the Poisson regression, however, it also failed to handle the overdispersion in the crash data. As 

the crash data contained a big number of zero crash road sections, the zero-inflated Poisson regression (ZIP) model was 

used to handle the excess zeros of crash sections. The ZIP model turned to be very effective in modeling the crash frequency 

by identifying a large number of significant risk factors contributing to crash occurrence and fitting the data reasonably 

well. All variables in the research were captured by the ZIP model to be significant (except the driver’s sex variable). These 

significant variables include; the mile post, the road characteristics, the road surface conditions, the weather conditions, the 

light conditions, the traffic volume (AADT), the driver’s age, and the vehicle type. For future research, we can include the 

interaction between the independent variables as additional risk factors in modeling the crash frequency.  
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